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Scaling behavior of nonhyperbolic coupled map lattices
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Coupled map lattices of nonhyperbolic local maps arise naturally in many physical situations described by
discretized reaction diffusion equations or discretized scalar field theories. As a prototype for these types of
lattice dynamical systems we study diffusively coupled Tchebyscheff maps of Nth order which exhibit stron-
gest possible chaotic behavior for small coupling constants a. We prove that the expectations of arbitrary
observables scale with Va in the low-coupling limit, contrasting the hyperbolic case which is known to scale
with a. Moreover we prove that there are log-periodic oscillations of period In N> modulating the Va depen-
dence of a given expectation value. We develop a general 1st order perturbation theory to analytically calculate
the invariant one-point density, show that the density exhibits log-periodic oscillations in phase space, and

obtain excellent agreement with numerical results.
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I. INTRODUCTION

Coupled map lattices (CMLs) as introduced by Kaneko
and Kapral [1,2] are a paradigm of higher-dimensional dy-
namical systems exhibiting spatio-temporal chaotic behavior.
There is a variety of applications for CMLs to model hydro-
dynamical flows, turbulence, chemical reactions, biological
systems, and quantum field theories (see, e.g., reviews in
Refs. [3,4]). The analysis of chaotic CMLs is often restricted
to numerical investigations and only a few analytical results
are known. A notable exception is the case of hyperbolic
maps (maps for which the absolute value of the slope of the
local maps is always larger than 1) for small coupling a. In
this case a variety of analytical results exists [5-8] that guar-
antee the existence of a smooth invariant density and ergodic
behavior. The situation is much more complicated for non-
hyperbolic maps which correspond to the generic case of
physical interest. Here much less is known analytically,
though some promising steps have been made [9-14].

In this paper, we present analytical results corresponding
to a nonhyperbolic situation and calculate invariant densities
explicitly for the case of locally fully developed chaos that is
diffusively coupled. We study local maps given by Nth order
Tchebyscheff polynomials. In the uncoupled case these maps
are conjugated to a Bernoulli shift of N symbols. In the
coupled case, this conjugacy is destroyed and the conven-
tional treatment for hyperbolic maps does not apply, since
the Tchebyscheff maps have N—1 critical points where the
slope vanishes, thus corresponding to a nonhyperbolic situa-
tion. From the physical point of view, the nonhyperbolic case
is the most interesting one. For example, it has been shown
that these types of nonhyperbolic CMLs naturally arise from
stochastically quantized scalar field theories in the anti-
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integrable limit [4]. They can serve as useful models for
vacuum fluctuations and dark energy in the universe [15].
Other applications include chemical kinetics as described by
discretized reaction diffusion dynamics [3].

The case of two coupled Tchebyscheff maps was previ-
ously studied in Ref. [16] using periodic orbit theory. Here
we consider infinitely many diffusively coupled Tscheby-
scheff maps on one-dimensional lattices with periodic
boundary conditions, and apply Perron-Frobenius and convo-
lution operator techniques. Our analytical techniques will
yield explicit perturbative expressions for the invariant one-
point density for small couplings a. We will prove that the
density exhibits log-periodic oscillations of period In N? near
the edges of the interval. Our explicit result for the invariant
density will allow us to calculate expectations of arbitrary
local observables. We will prove that expectations of typical
observables scale with Va (rather than with a as for hyper-
bolic coupled maps). We also show that there are log-
periodic modulations of expectation values when the param-
eter a is changed. Our results seem to be typical for local
maps with one or several quadratic maxima that are locally
conjugated to a Bernoulli shift of N symbols. Other types of
maps may of course generate different types of behavior for
a—0 [11].

This paper is organized as follows. In Sec. II we introduce
the relevant class of coupled map lattices and briefly explain
their physical relevance. In Sec. III we give some numerical
results for the scaling behavior of these nonhyperbolic sys-
tems. In Sec. IV we present our analytical results for the
invariant density which we use to rigorously prove the scal-
ing behavior.

II. THE CLASS OF SYSTEMS

Consider a scalar field ¢(x,#) described by an equation of
the form
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2 o=DAp+ V(9. 1)

ot
Here D is a diffusion constant and V is some suitable poten-
tial. These types of equations occur in many different areas
of physics. They describe reaction diffusion systems,
Ginzburg-Landau type of models, nonlinear Schrodinger
equations, stochastically quantized field theories, etc. In the
one-dimensional case the Laplacian A is just given by
@*/dx*. In many cases there is a fundamental length and time
scale below which the above continuum theory is not valid
anymore. For example, for stochastically quantized field
theories this is the Planck length [4]. Writing r=n7, x=i4,
where n and i are integers and @(x,7)=py, P, where @ is
a dimensionless field and p,,,, iS some constant with the
same dimension as the field, the discretized Eq. (1) can be
written in the form

1= (1= Q) T(@)) + () + D)), 2)
where the local map 7 is given by

T((I)) =b+ 14 (pmax(b)? (3)

r
(1 - Cl)P max
and the dimensionless coupling a is given by a=2D7/ &. For
various applications of these types of coupled map lattices,
see Refs. [3,4]. The important point is that generically these
types of models can lead to nonhyperbolic local maps 7. For
example, a ¢* theory described by a double well potential
V(¢) with a sufficiently strong quartic term leads to cubic
maps with two inflection points where the slope T'(P) van-
ishes. It is thus important to understand the generic behavior
of nonhyperbolic coupled map lattices.

We are particularly interested in cases where the local
map exhibits strongest possible chaotic behavior. The nega-
tive third order Tchebyscheff map

ch+l = T—S(CDn) == 4'<D;31 + 3cI)n (4)

on the interval ® €[-1,1] is such an example. It is conju-
gated to a Bernoulli shift of three symbols and can be ob-
tained in our context from the potential

l-a 4
Vi) = (902 - —f ) + const. (5)
T pmax
In a similar way, one can construct potentials that lead to
positive and negative Tchebyscheff maps of arbitrary order N

[4].

III. OBSERVED SCALING BEHAVIOR

Let us now study CMLs of type (2) where T=Ty is a
Tschebyscheff map of order N. One observes nontrivial scal-
ing behavior for small values of the coupling a that is sig-
nificantly different from that of hyperbolic systems. Consider
an arbitrary test function 4(P) of the local iterates. Assuming
ergodicity, expectations (h(P)), for a given parameter a are
numerically calculable as time averages
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FIG. 1. The function VaF™(Ina) of Eq. (7) with h(®)
=Vy(P) as function of a for N=2,3 in a double-logarithmic plot
with basis N.

M J
> 2 h(®). (6)

n=1 i=1

1
h®) = lim —
() Mo M

For a— 0 one numerically observes the scaling behavior
(h(®))y = (h(®))o = VaF™(in a) (M)

where F) is a periodic function of Ina with period In N2.
Examples are shown in Fig. 1. The choice A(®)=V (D)
:i= I [T\(P)d®d is important in the physical applications to
estimate the vacuum energy generated by the chaotic field
theory under consideration [4]. Generally the function F
=F[h] is a functional of the chosen test function .

The above log-periodic scaling is observed for arbitrary
test functions / and hence is a general property of the invari-
ant one-point density p,(®P) of the CML for given small cou-
plings a. In fact one observes that there is not only scaling in
the parameter space a but also in the phase space ®. This is
shown in Fig. 2.

Near the left edge of the interval [—1,1] one may write
®=ay—1 and observe the scaling behavior

gy, (8)

where the function g is independent of a for small a. At the
right edge, writing ®=1-ax, one observes

pa(ay_ 1)=a

p (1 —ax) = py(1 —ax) + %a‘”zx_lf(x), )

where f is independent of a for small a. Moreover, f exhibits
log-periodic oscillations

FIN*x) = f(x) (10)

over a large region of the phase space (see Fig. 2). The
number of oscillations is approximately —Iny2(a).

For N odd the density is symmetric and the behavior at
the left and right edge is the same, whereas for N even there
is no left-right symmetry. In the following section we will
analytically prove the above numerical observations and pro-
vide explicit formulas for the functions f and g for a given
local Tchebyscheff map Ty.
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FIG. 2. Log-periodic oscillations of the rescaled invariant den-
sity f(x) as observed for N=2 (top) and N=3 (bottom) and different
values for a.

IV. PERTURBATIVE CALCULATION
OF THE INVARIANT DENSITY

Our method is based on a perturbative treatment of the
Perron-Frobenius operator of a perturbed local map and on
convolution techniques. In a first approximation, the neigh-
boring lattice sites can be regarded as producing independent
random noise with density py(®)=(1-®>)"2/ 7. While this
picture works well in the middle of the interval [-1,1], in
the vicinity of the edges +1 one has to take into account
nontrivial nearest neighbor correlations, due to the nonhyper-
bolicity of the map. A first-order approximation of the den-
sity can then be further iterated to yield results of better
precision. In each step we integrate over two-point functions
describing the joint probability of neighbored lattice sites to
obtain the marginal distribution at a single lattice site. A
detailed description of our calculations is out of the scope of
a short letter; they will be published elsewhere [17]. Our
final result is that for N=2 one obtains in leading order of Va
at the left edge p,(ay-1)= pzo)(ay— 1), where

1 J Po(@,)db.po(d_)dep_
Vy=1+(do+ )2
At the right edge one obtains by iterating our scheme g times
p(l—ax)= Egzlpf{’)(l —ax), where
1 f po(@)dd.py(P )dd_
#\2a ) \x147 + () + 5(p)
(12)

pS”(ay—l): (11)

™ 2a

pP(1 - ax) =

Here the function r5(¢) is defined as follows:
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14, Taleh) - 1
F§(¢)=52 ZT

q=0

(13)

The limits of the two integrations in Egs. (11) and (12) are
given by the condition that |¢.|<1 and that the argument of
the square root should always be positive.

A simple way to numerically evaluate our formulas is to
replace the double integrals by ergodic averages of iterates of
the uncoupled Tchebyscheff map. So, for example, we may
evaluate the density at the left edge as

11 &8 y-1+(@, +®,)2]

(0)(11 1)z ———
o @y —1)=—= ;
P m™2a M2 \y-1+(D, +D, )2
(14)
and similar formulas apply to the right edge.
Equation (11) can also be written as
1 (! d
o0y -1 =—— [ 2D
m2alJiyNy-1+z
2 ’! 2 2
Poo(2)=;K(\f1—z)0(l—z), (16)

where K(x) is the complete elliptic integral of the first kind.
From the above formula it is obvious that the density is not
differentiable at y=1 and y=2 for arbitrarily small a (com-
pare Fig. 3). By iteration of the Perron-Frobenius operator
one can show that these two nonanalytic points generate an
entire cascade of such points at the right edge of the interval.

Note that the sum over the terms in Eq. (12) converges
rapidly with increasing ¢. In practice, a few terms are suffi-
cient to obtain perfect agreement with the numerical histo-
grams. Figure 3 shows how well our analytical results (11)
and (12) agree with the numerics. The agreement is so good
that the analytic curves (given by dashed-dotted lines in Fig.
3) are not visible behind the data points.

Along similar lines, we obtain for N=3

pP(1 - ax) = 2 po(¢.)dp.py(p_)dp_

93m2a ) %197+ () + ()
(17)
with
14, Taa(p) -1
2p)==2, ——. 18
() 2;) 5 (18)
The density is symmetric, i.e.,
pgp)(ax—1)=pl(lp)(1—ax). (19)
For general N it is natural to conjecture that
1 d _)dd_
pgp)(l _ax) ~ ?f /pO(j’+) ¢’+p0(¢ ) ¢ ; (20)
va J NxINP+ {(p,) + rii(d)

with
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FIG. 3. Scaling behavior of the invariant one-point density near
the left and right edges of the interval [-1,1] for N=2 and «
=0.00007625. Shown is the density at the left (upper diagram) and
right edges (lower diagram) in comparison with the exact results
(dashed-dotted curve, covered by the numerical result) and the den-
sity po(¢p) (dotted curve) together with several thresholds, i.e.,
points with nonanalytic behavior (dashed lines).

P Tya(d) -1
%(¢)=12L

. (21)
2.5 NH

With the above equations we have derived explicit formu-
las for the scaling functions f and g in Egs. (8) and (9). It is

PHYSICAL REVIEW E 74, 046216 (2006)

easy to check from this integral representation that f indeed
satisfies property (10). Using Egs. (8)—(10) it is also possible
to prove the general scaling relation (7) for arbitrary test
functions h. Due to space restrictions we do not describe the
details here but refer to a longer version [17]. The function
FW) is essentially given by a suitable integral of the observ-
able h folded with f.

V. CONCLUSION

We have derived in a perturbative way the one-point den-
sity for weakly coupled Tchebyscheff maps and rigorously
proved the existence of several interesting scaling phenom-
ena that are numerically confirmed. When changing the cou-
pling constant @ one observes scaling with Va and log-
periodic oscillations both in parameter space and phase
space. We were able to rigorously prove this behavior. Our
perturbative results are in excellent agreement with numeri-
cally obtained histograms and numerically determined ex-
pectation values. While most results in the mathematical lit-
erature are for coupled map lattices consisting of uniformly
expanding maps, our perturbative approach yields an impor-
tant step to understand nonhyperbolic cases, i.e., cases where
the local map has one or several points with slope zero and is
locally conjugated to a Bernoulli shift of N symbols.
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